Decentralized Frank–Wolfe Algorithm for Convex and Nonconvex Problems
نویسندگان
چکیده
منابع مشابه
Decentralized Frank-Wolfe Algorithm for Convex and Nonconvex Problems
Decentralized optimization algorithms have received much attention due to the recent advances in network information processing. However, conventional decentralized algorithms based on projected gradient descent are incapable of handling high dimensional constrained problems, as the projection step becomes computationally prohibitive to compute. To address this problem, this paper adopts a proj...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملConvex Relaxation Methods for Nonconvex Polynomial Optimization Problems
This paper introduces to constructing problems of convex relaxations for nonconvex polynomial optimization problems. Branch-and-bound algorithms are convex relaxation based. The convex envelopes are of primary importance since they represent the uniformly best convex underestimators for nonconvex polynomials over some region. The reformulationlinearization technique (RLT) generates LP (linear p...
متن کاملEigenvalue Techniques for Convex Objective, Nonconvex Optimization Problems
Consider a minimization problem given by a nonlinear, convex objective function over a nonconvex feasible region. Traditional optimization approaches will frequently encounter a fundamental difficulty when dealing with such problems: even if we can efficiently optimize over the convex hull of the feasible region, the optimum will likely lie in the interior of a high dimensional face, “far away”...
متن کاملComplete decomposition algorithm for nonconvex separable optimization problems and applications
Abstraet~In this paper, we present a complete decomposition algorithm for nonconvex separable optimization problems applied in the optimal control problems. This complete decomposition algorithm combines recursive quadratic programming with the dual method. When our algorithm is applied to discretized optimal control problems, a simple and parallel computation and a simple and regular data flow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2017
ISSN: 0018-9286,1558-2523
DOI: 10.1109/tac.2017.2685559